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Abstract: 

In an attempt to find potential anti-cancer agents, a series of new 1,2,3 triazole linked indole 

hybrids (7a-I) were synthesized in good yields from suitable reaction procedures and their 

chemical structures were analyzed by 1H NMR, 13C NMR, IR, and mass spectral analysis. The 

synthesized derivatives further screened for anticancer activity against two human cancer cell 

lines A549 (Lung Cancer) and MCF7 (Breast Cancer). Among them, compounds7b, 7c, and 

7d exhibited good anti-proliferation activity compared with standard drug Doxorubicin. The 

docking results obtained are complementary to the experimental observations. 

 

Keywords: 1, 2, 3 triazole linked indole hybrids, anti-cancer activity, and molecular docking. 

 

Introduction 

Cancer is one of the most common deadly diseases, identified by the multiplication and 

expansion of cells in different tissues and organs. [i]. Global cancer incidences are steadily 

increasing with approximately 18.1 million new cases by 2018 and almost one in six deaths 

globally [ii]. The remarkable treatment of cancer still remains a drawback, due to the severe 

side effects of chemotherapeutics. Despite existing diagnostic methods and management of 

cancer showing remarkable progress. So there is always a high demand to develop new and 

attentive anticancer agents [iii, iv]. 

Indole or 1H-benzo[b]pyrrole, is the most important bicyclic heterocyclic compound with 

fused benzene and pyrrole ring. It is considered a biologically privileged scaffold, dispersed in 

various natural products like plants, animals, alkaloids, and microbial hormones [v,vi]. It 

exhibits broad range of pharmacological properties such as antibacterial, antiviral [vii] anti-

fungal [viii-xii] antioxidant [xiii-xvi] anti-inflammatory [xvii-xxii] anticholinesterase [xxiii, 

xxiv] antihistamine [xxv] anti-diabetic [xxvi] and anticancer [xxvii-xxxii]. 

http://heteroletters.org/
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J. Ramchander et al. / Heterocyclic Letters Vol. 13| No.1|71-91|November -January |2023 

 

72 
 

 A few examples of natural anticancer agents containing indole as backbones are vincristine 

and vinblastine isolated from Catharanthus roseus act as antimitotic agents and are used to 

treat breast cancer, Kaposi's sarcoma, Hodgkin's disease, and non-Hodgkin's lymphoma [xxiii]. 

The marine alkaloid eudistomin K (1) acts against the P-388 tumor cell line with an IC50 range 

of 0.01 μg/mL[xxiv]. The analog of cinnamic hydroxamic acid, Panobinostat (LBH-589) (2)a 

marketed drug used in the treatment of multiple myeloma. 

Similarly1,2,3 Triazoles, class of nitrogen containing heterocyclic compounds. Its non-

covalent interactions with various biological targets possess broad range ofpharmacological 

properties like antibacterial [xxxv,xxxvi] antimalarial [xxxvii,xxxviii] antifungal [xxxix,xl] 

antiviral [xli,xlii] antitubercular [xliii,xliv]and anticancer [xlv,xlvi] activities. Cefatrizine (3) 

and Carboxyamidotriazole(4)[xvvii] are anticancer agents containing 1,2,3-triazole as main 

skeleton. 

                                                    
                       Eudistomin                                                         KPanobinostat (LBH-589) 

                     
                        Cefatrizine                                                          Carboxyamidotriazole 

 

Figure 1- The chemical structures of anticancer agents containing Indole and 1,2,3 

triazole as a   scaffold. 

 

Considering the anti-cancer activity exhibited by both indole derivatives and 1,2,3-Triazole 

derivatives from the literature search, it was hypothesized that the fusion of indole and 1,2,3 

triazole could result in molecules having greater anti-cancer activity due to the synergistic 

effect of both indole and 1,2,3 triazole scaffolds. Hence, the synthesized hybrid derivatives 

were evaluated for anti-cancer activity against two human cell lines with results supported by 

docking studies. 

 

2. Results and discussion: 

Chemistry 

Synthesis of 3-(4,5-diphenyl-1-((substituted-phenyl-1H-1,2,3-triazole-4-yl)methyl)-1H-

imidazole-2-yl)-1-((substituted-phenyl-1H-1,2,3-triazole-4-yl)methyl)-1H-indole.The 

synthetic route for the desired 1,2,3 triazole linked indole  hybrids  (7a-l) were carried out by  

one-pot three-component reaction. The condensation of 1H-indole-3-carbaldehyde (1), benzil 

(2), and catalytical amount of acetic acid in ethanol at 70°C for 4-5 hrs to afford compound (3) 

followed by bis propargylation at the position of free N-H group with propargylic bromide (4) 

dry DMF and dry K2CO3 at rt for 3-4 hrs lead to the formation of compound (5), which on 

further click reaction with substituted aryl azides (6a-l) obtained 1,2,3-triazole linked indole 

hybrids (7a-l) in yields (75-82%), shown in Scheme1.  



 

 

J. Ramchander et al. / Heterocyclic Letters Vol. 13| No.1|71-91|November -January |2023 

 

73 
 

 
                    Scheme 1: The synthetic route of 1,2,3-tethered indole hybrids 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

J. Ramchander et al. / Heterocyclic Letters Vol. 13| No.1|71-91|November -January |2023 

 

74 
 

 

Derivatives: 
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Biological evaluation: 

The synthesized compounds(7a-l) were screened for anti-cancer activity against two human 

cancer cell lines such as A549 (lung cancer), and MCF-7 (breast cancer), by MTT assay. The 

IC50 values of compounds (7a-l) displayed good to moderate anti-cancer activities were 

summarized in Table 1. Among them, compounds 7b, 7c, and 7d exhibited good anticancer 

activity compared to the standard drug. Further, a structural activity relationship study was 

investigated for these compounds (7a-l). It showed that compound 7d with the para-chloro 

group on the phenyl ring exhibited more potent activity than doxorubicin. Replacement of 

chlorine with bromine in compound 7b with para Bromo position on phenyl ring resulted in a 

decrease in activity than 7d. Shifting of para position to ortho position on the phenyl ring, 

Compound 7c with ortho-chloro substitution showed lower activity compared with 7d. 

Compound 7e with para hydroxyl group showed a loss of activity. Substitution with OCH3 

group at para 7g and ortho 7h position, methyl group at para 7i position, acetyl group at meta 

7j and para 7k position, and nitro at para 7l position on the phenyl ring are not tolerated, 

resulting in loss of activity. 

 

Table 1: The IC50 values of compounds (7a-l) 

Compound      IC50 in μM at 72 hrs 

 A-549 MCF-7 

7a 31.21%±1.69 29.61%±4.1 

7b 18.59%±8.86 16.23%±1.4 

7c 19.08%±1.04 18.51%±1.38 

7d 15.13%±1.86 15.69%±0.076 
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7e 57.21%±1.02 51.13%±2.13 

7f 42.39%±1.04 53.17%±2.16 

7g 52.75%±1.497 44.17%±1.275 

7h 48.28%±6.29 54.60%±2.08 

7i 40.16%±1.74 59.63%±4.6 

7j 59.13%±4.9 65.31%±7.82 

7k 50.93%±1.67 68.31%±1.275 

7l 53.17%±2.16 59.72%±0.335 

Doxorubicin 21.48 ± 1.40 28.17%±2.84 

 

Molecular docking studies: 

Molecular docking is a reliable, cost-effective, and time-saving technique in the process of 

drug discovery [xlviii]. Autodock Vina of PyRx tool is an open-source software tool [xlix] used 

for performing docking studies.  Autodock vina uses an empirical scoring function to calculate 

the binding affinity of the protein-ligand complex [l]. 

For a better understanding of the binding interactions between ligand molecules and target 

cancer cells, the best active compounds 7b, 7c, and 7d along with doxorubicin were docked 

into the active site pockets of a lung cancer drug target extracellular signal-related kinase 2 

(ERK2) (PDB ID: 4ZXT) [li] and a breast cancer drug target aurora-related kinase 1 (PDB ID: 

1MQ4) [xlii]. The crystal structures of both targets were retrieved from Protein Data Bank 

(www.rcsb.org). The proteins were prepared by using the Biovia Discovery Studio software 

tool (https://discover.3ds.com/discovery-studio-visualizer-download). Initially, water 

molecules were removed and polar hydrogens were added to a macromolecule.  The ligands 

were sketched by using the Chemsketch tool (www.acdlabs.com) and saved in MDL file 

format.  Both target and ligand molecules were loaded into the PyRx tool. The energies of 

ligands were minimized and converted to PDBQT file format. The protein was chosen as a 

macromolecule. The active site pockets of target molecules were determined by CASTp online 

server [xliii]. The 3D grid box was set up in such a way to cover the active site pocket of the 

target molecule and docking simulations were performed.  

After docking, conformations were ranked according to their binding energy, and the 

confirmation with the lowest binding energy was considered the best docking score. The 

docking results were visualized using Pymol and Biovia Discovery Studio Visualizer.  

Molecular docking with extracellular signal-related kinase 2 (ERK2): 

The three compounds 7b, 7c, and 7d scored excellent binding energy values than standard 

reference doxorubicin. The binding affinity values of compounds 7b, 7c, and 7d were -10.0 

Kcal/mol, -11.8 Kcal/mol, and -11.7 Kcal/mol respectively, whereas doxorubicin was scored -

9.2 Kcal/mol. (Table2). The active site pocket of ERK2 comprised of amino acids Ile31, Gly32, 

Glu33, Gly34, Ala35, Tyr36, Gly37, Met38, Val39, Ala52, Lys54, Lys55, Ile56, Arg67, Thr68, 

Glu71, Ile72, Leu75, Ile84, Ile103, Gln105, Asp106, Leu107, Met108, Glu109, Thr110, 

Asp111, Lys114, Asp149, Lys151, Ser153, Asn154, Leu156, Ile165, Asp167, Gly169, and 

Leu170. The 3D grid box was configured with dimensions of 32.38 x 26.75 x 29.71 A0along 

the X, Y, and Z axis respectively to cover the cavity of 4ZXT. 

http://www.rcsb.org/
https://discover.3ds.com/discovery-studio-visualizer-download
http://www.acdlabs.com/
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Table 2: The binding energies and interactions of compounds 7b, 7c, and 7d with extracellular 

signal-related kinase 2 (PDB ID: 4ZXT) 

Compound 

Docking 

Score 

(Kcal/mol) 

Interacting amino acid 

H-bond Hydrophobic 

7b -10.0 Glu33, Ser153 
Ile31, Ala35, Tyr36, Val39, Ala52, Lys54, 

Arg67, Asp111, Lys114, Asp167 

7c -11.8 -- 
Ala35, Tyr36, Val39, Ala52, Tyr113, 

Lys151, Ser153, Leu156, Asp167 

7d -11.7 Asp111 

Ile31, Ala35, Tyr36, Val39, Arg67, 

Asp111, Lys114, Lys151, Asn154, Leu156, 

Asp167, Arg191, Trp192 

Doxorubicin -9.2 

Lys54, 

Gln105, 

Asp111, 

Lys114, 

Ser153 

Ile31, Gly34, Ala35, Tyr36, Asp167 

 
Compound 7b demonstrated key interactions with Glu33, Ser153, and hydrophobic 

interactions with Ile31, Ala35, Val39, Lys54, and Lys114 of ERK2 (figure-2,3). Compound 7c 

has defined only hydrophobic interactions with Ala35, Tyr36, Val39, Ala52, Tyr113, Lys151, 

Ser153, Leu156, Asp167 of ERK2 (figure-4,5), and H-bond interactions were absent. 

Compound 7d was defined as an H-bond interaction with Asp111and hydrophobic interactions 

with Ile31, Ala35, Tyr36, Val39, Arg67, Asp111, Lys114, Lys151, Asn154, Leu156, Asp167, 

Arg191, Trp192 of ERK2 (figure-6,7). The standard drug doxorubicin was defined as H-bond 

interactions with Lys54, Gln105, Asp111, Lys114, Ser153, and hydrophobic interactions with 

Ile31, Gly34, Ala35, Tyr36, Asp167 of ERK2 (figure-8,9). 

 
Figure-2: Docking pose of compound 7b in cavity of ERK2 (PDB ID: 4ZXT) 
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Figure-3. 2D interactions of compound 7b with ERK2 (PDB ID: 4ZXT) 

 
Figure-4. Docking pose of compound 7c in cavity of ERK2 (4ZXT) 

 
Figure-5. 2D interactions of compound 7c with ERK2 (PDB ID: 4ZXT) 
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Figure-6. Docking pose of compound 7d in cavity of ERK2 (PDB ID: 4ZXT) 

 
Figure-7. 2D interactions of compound 7d with ERK2 (PDB ID: 4ZXT) 

 
Figure-8. Docking pose of doxorubicin in cavity of ERK2 (PDB ID: 4ZXT) 
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Figure-9. 2D interactions of doxorubicin with ERK2 (PDB ID: 4ZXT) 

 

Molecular docking with aurora-related kinase 1: 

 The three compounds 7b, 7c and 7c scored best binding energy values compared to 

doxorubicin. The docking score of compounds 7b, 7c, and 7d were -11.3 Kcal/mol, -12.3 

Kcal/mol, and -11.6 Kcal/mol respectively and the doxorubicin score was -9.9 Kcal/mol 

(Table-3). The active site pocket of Aurora kinase 1 comprised of amino acids Leu139, Gly140, 

Lys141, Gly142, Lys143, Val147, Ala160, Lys162, His176, Arg180, Leu194, Glu211, Ala213, 

Thr217, Arg255, Glu260, Asn261, Leu263, Asp274, Trp277, Ser284, Arg285, and Thr288. 

The 3D grid box was configured with dimensions of 35.88 x 27.84 x 25.54 A0 along the X, Y, 

and Z-axis respectively to cover the cavity of 4ZXT. 

Table 3: The binding energies and interactions of compounds 7b, 7c, and 7d with aurora-related 

kinase 1 (PDB ID: 1MQ4) 

Compound 
Docking Score 

(Kcal/mol) 

Interacting amino acid 

H-bond Hydrophobic 

7b -11.3 Glu260 

Leu139, Lys141, Lys143, Phe144, Val147, 

Lys162, Leu169, Val174, Leu178, Ala213, 

Tyr219, Arg220, Leu263, Asp274  

7c -12.3 

Asp256, 

Asn261, 

Asp274  

Lys143, Phe144, Val147, Ala160, Glu181, 

Leu263, Ala273, Asp274, Trp277 

7d -11.6 Lys141 

Leu139, Gly142, Lys143, Val147, Lys162, 

Ala213, Tyr212, Tyr219, Arg220, Glu260, 

Leu263, Asp274 

Doxorubicin -9.9 

Lys143, 

Asp256, 

Glu260 

Leu139, Lys141, Gly142, Val147, Ala160, 

Ala213, Leu263, Asp274 

 

 Compound 7b was demonstrated two key interactions with Glu260 and hydrophobic 

interactions with Leu139, Lys141, Lys143, Phe144, Val147, Lys162, Leu169, Val174, 

Leu178, Ala213, Tyr219, Arg220, Leu263, Asp274 of 1MQ4 (figure 10,11). Compound 7c has 

defined H-bond interactions with Asp256, Asn261, Asp274 and hydrophobic interactions with 

Lys143, Phe144, Val147, Ala160, Glu181, Leu263, Ala273, Asp274, Trp277 of aurora kinase 

1 (figure 12,13). Compound 7d demonstrated a key interaction with Lys141 and hydrophobic 

interactions with Leu139, Gly142, Lys143, Val147, Lys162, Ala213, Tyr212, Tyr219, Arg220, 
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Glu260, Leu263, Asp274 of kinase 1 (figure 14,15). The standard compound doxorubicin was 

defined as key interactions with Lys143, Asp256, Gly260 and hydrophobic interactions with 

Leu139, Lys141, Gly142, Val147, Ala160, Ala213, Leu263, Asp274 with aurora-related 

kinase 1 (figure 16,17). 

 
Figure-10. Docking pose of compound 7b in cavity of aurora-related kinase 1 (PDB ID: 1MQ4) 

 
Figure-11. 2D interactions of compound 7b with aurora-related kinase 1 (PDB ID: 1MQ4) 

 
Figure-12. Docking pose of compound 7c in cavity of aurora-related kinase 1 (PDB ID: 1MQ4) 
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Figure-13. 2D interactions of compound 7c with aurora-related kinase 1 (PDB ID: 1MQ4) 

 
Figure14. Docking pose of compound 7d in cavity of aurora-related kinase 1 (1MQ4) 

 
Figure-15. 2D interactions of compound 7d with aurora-related kinase 1 (PDB ID: 1MQ4) 
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Figure-16. Docking pose of doxorubicin in cavity of aurora-related kinase 1 (PDB ID: 1MQ4) 

 
Figure-17. 2D interactions of doxorubicin with aurora-related kinase 1 (PDB ID: 1MQ4) 

 

3. Conclusion 

In summary, a series of 1,2,3-triazole tethered indole hybrids derivatives (7a-l) were 

synthesized and characterized by 1HNMR, 13CNMR, and mass spectral analysis. Further, these 

synthesized compounds were tested for their anticancer activity against two human cancer cell 

lines, A549 (Lung cancer), and MCF7 (Breast cancer).  Doxorubicin is used as a control. 

Among them, compounds 7b, 7c, and 7d showed potent anticancer activity compared to control 

drugs. The docking study results were well in agreement with experimental screening, 

compounds 7b, 7c, and 7d scored the best binding affinity values compared to doxorubicin. 

Hence, these compounds could be the potent therapeutics to treat malignancy.  

 

4.  Experimental: 

4.1 General experimental methods: 

Were purchased all the chemicals of the organic reagents and solvents from Tci, and Merk was 

used without further.1H NMR and 13C NMR spectra were determined in DMSO by using 500 

and 125 MHz spectrometers (Instrument Bruker Avance II 500MHz). Chemical shift values 

are displayed as ppm and spin multiplicities are indicated as singlet (s); doublet (d); doublet of 

doublet (dd); triplet(t); multiplets (m); and coupling constants are shown in hertz. Column 

chromatography was performed on silica gel (60-120 mesh) using distilled hexane and ethyl 

acetate solvents. Mass and Infrared spectra were recorded on QSTAR XL GCMS, Shimadzu 

FT-IR-8400s mass spectrometer. Melting points were determined in an open glass capillary 

tube on a DbkProg. Melting Point apparatus and were uncorrected. 
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General procedure for the preparation of 3-(4,5-diphenyl-1H-imidazole-2-yl)-1H-indole 

(3) 

The synthetic route for the 3-(4,5-diphenyl-1H-imidazole-2-yl)-1H-indole (3) was carried out 

by one-pot three-component condensation of 1H-indole-3-carbaldehyde (1), benzil (2) and 

ammonium acetate and catalytical amount of acetic acid in ethanol at 70°C for 4-5 hrs to afford 

compound (3) 

General procedure for the preparation of 3-(4,5-diphenyl-1-(prop-2-yn-1-yl)-1H-

imidazol-2-yl)-1-(prop-2-yn-1-yl)-1H-indole (5) 

The synthetic route for the 3-(4,5-diphenyl-1-(prop-2-yn-1-yl)-1H-imidazole-2-yl)-1-(prop-2-

yn-1-yl)-1H-indole (5) was carried out by bis propargylation of compound (3with propargylic 

bromide (4) dry DMF and dry K2CO3 at rt for 3-4 hrs bisproporgylation at the position of free 

N-H groups yields to bis-propargylated compound (5) 

General procedure for the preparation of 3-(4,5-diphenyl-1-((substituted 1-phenyl-1H-

1,2,3-triazol-4-yl)methyl)-1H-imidazol-2-yl)-1-((substituted1-phenyl-1H-1,2,3-triazol-4-

yl)methyl)-1H-indole(7a-l)  

Synthesis of 3-(4,5-diphenyl-1-((substituted-phenyl-1H-1,2,3-triazol-4-yl)methyl)-1H-

imidazol-2-yl)-1-((substituted-phenyl-1H-1,2,3-triazol-4-yl)methyl)-1H-indole (7a-l) were 

carried out by click reaction of  bis-propargylated compound (5) (0.1 mmol) with different aryl 

azides (6a-l) (0.2mmol) using Click chemistry in CuSO4.5H2O with sodium ascorbate  and 

DMF at room temperature for 6-8 hours. The completion of the reaction was monitored by 

TLC. Upon completion of the reaction mass were purified by column chromatography using 

hexane/ ethyl acetate (1:3 v/v) to afford 3-(4,5-diphenyl-1-((substituted 1-phenyl-1H-1,2,3-

triazol-4-yl)methyl)-1H-imidazol-2-yl)-1-((substituted1-phenyl-1H-1,2,3-triazol-4-

yl)methyl)-1H-indole (7a-l) gave excellent yields 75-82%. 

Anticancer activity:  

  MTT Assay: 

Individual wells of a 96-well tissue culture microtitre plate have been inoculated with one 

hundred µL of complete medium containing 1×104 cells. The plates have been incubated at 

37℃ in a humidified 5% CO2 incubator for 18 hours before the experiment. The medium used 

to be as soon as eradicated and a hundred µL of smooth medium containing the test compounds 

and elegant at wonderful concentrations have been delivered to every desirable and incubated 

at 37℃ for 24 hours. Then the medium used to be discarded and 10 µL MTT dye used to be 

added. Plates have been incubated at 37℃ for two hours. The ensuing formazan crystals have 

been solubilized in a one hundred µL extraction buffer. The optical density (O.D) was once as 

soon as recorded at 570 nm with a microplate reader (Multi-mode Varioskan Instrument-

Thermo Scientific). The share of DMSO in the medium through no skill passed 0.25%. 
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Yield 75%, mp: 187-189℃; Rf = 0.40 (EtOAc:n-Hexane 2:3); 1H NMR (500 MHz, DMSO-

d6) δ 8.49 (s, 2H), 7.78 (d, J = 7.57 Hz, 2H), 7.76 (d, J = 7.57 Hz, 2H), 7.72 (d, J = 7.90 Hz, 

1H), 7.64 (d, J = 7.85 Hz, 2H), 7.58 (s, 1H), 7.50 (dd, J = 7.90, 6.99 Hz, 1H), 7.44 (d, J = 7.85 

Hz, 1H), 7.43 (dd, J = 7.85, 7.45 Hz, 2H), 7.41 (dd, J = 7.57, 7.20 Hz, 2H), 7.41 (dd, J = 7.85, 

7.45 Hz, 2H), 7.41 (t, J = 7.45 Hz, 2H), 7.37 (t, J = 7.20 Hz, 2H), 7.36 (d, J = 7.85 Hz, 2H), 

7.35 (dd, J = 7.57, 7.20 Hz, 2H), 7.33 (t, J = 7.45 Hz, 1H), 7.20 (dd, J = 7.85, 6.99 Hz, 1H), 

5.38 (s, 2H), 5.33 (s, 2H).13C NMR (125 MHz, DMSO-d6) δ 150.1, 144.2, 143.9, 143.3, 139.6, 

137.4, 135.7, 133.2, 130.1, 129.8, 129.4, 128.6, 128.5, 128.0, 127.9, 127.8, 127.6, 125.0, 124.8, 

124.4, 124.3, 123.0, 122.7, 120.7, 112.8, 110.1, 50.1, 50.0.LC-MS m/z: 740.7 [M+H]+ 

Elemental analysis, Calculated, %:C41H29N11O4: C, 66.57; H, 3.95; N, 20.83;  Found %: C, 

66.51; H, 3.91; N, 20.79. 

1-((1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)methyl)-3-(1-((1-(4-bromophenyl)-1H-1,2,3-

triazol-4-yl)methyl)-4,5-diphenyl-1H-imidazol-2-yl)-1H-indole(7b) 

Yield 80%, mp: 191-193℃; Rf = 0.40 (EtOAc:n-Hexane 2:3); 1H NMR (500 MHz, DMSO-

d6) δ 8.49 (s, 1H), 8.48 (s, 1H), 7.96 (d, J = 8.30, 9.30 Hz, 2H), 7.81 (d, J = 8.30, 9.30 Hz, 2H) 

7.72 (d, J = 7.90 Hz, 1H), 7.64 (d, J = 7.85 Hz, 2H), 7.58 (s, 1H), 7.56 (d, J = 8.30, 9.30 Hz, 

2H), 7.53 (d, J = 8.30, 9.30 Hz, 2H), 7.45 (dd, J = 7.85, 7.45 Hz, 2H), 7.44 (t, J = 7.45 Hz, 1H), 

7.42 (dd, J = 7.90, 6.99 Hz, 1H), 7.40 (d, J = 7.85 Hz, 1H), 7.39 (t, J = 7.85 Hz, 2H), 7.36 (d, J 

= 7.85 Hz, 2H) 7.33 (t, J = 7.45 Hz, 1H), 7.16 (dd, J = 7.85 6.99 Hz, 1H), 5.32 (s, 2H), 5.30 (s, 

2H).13C NMR (125 MHz, DMSO-d6) δ 145.21, 12.13, 140.14, 139.72, 135.77, 133.68, 132.14, 

130.27, 128.73, 128.37, 127.83, 127.67, 127.30, 127.04, 125.07, 124.33, 124.06, 122.03, 

121.02, 120.12, 119.54, 118.95, 118.82, 110.41, 109.41, 40.13, 38.12. LC-MS m/z: 808 

[M+H]+ Elemental analysis, Calculated, %:C41H29Br2N9 : C, 60.98; H, 3.62; N, 15.61 Found 

%:C, 60.92; H, 3.59; Br, 19.79; N, 15.57. 

1-((1-(2-chlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-3-(1-((1-(2-chlorophenyl)-1H-1,2,3-

triazol-4-yl)methyl)-4,5-diphenyl-1H-imidazol-2-yl)-1H-indole(7c) 

Yield 78%, mp: 195-197℃; Rf = 0.38 (EtOAc:n-Hexane 2:3);1H NMR (500 MHz, DMSO-d6) 

δ 8.47 (s, 1H), 8.45 (s, 1H), 8.21(s, 1H), 7.96 (dd, J = 7.51, 2.03 Hz,1H), 7.47-7.36 (m, J = 

7.80, 7.49, 2.02 Hz, 14H), 7.30 (m, 7.50, 2.0 Hz, 2H), 7.21 (t, J = 7.85, 6.99 Hz, 1H), 5.23 (s, 

2H), 4.97 (s, 2H).13C NMR (125 MHz, DMSO-d6) δ 145.43, 141.87, 140.26, 139.94, 125.84, 

133.96, 133.84, 132.02, 131.96, 130.27, 128.76, 128.52, 128.30, 127.98, 127.83, 127.60, 

127.51, 127.49, 127.03, 125.09, 124.38, 124.17, 122.05, 121.37, 120.50, 119.38, 118.94, 

110.42, 109.36, 40.36, 38.52. LC-MS m/z: 718 [M+H]+ Elemental analysis, Calculated, 

%:C41H29Cl2N9: C, 68.52; H, 4.07; N, 17.54  Found %:C,68.48; H, 4.02; N, 17.49. 

1-((1-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-3-(1-((1-(4-chlorophenyl)-1H-1,2,3-

triazol-4-yl)methyl)-4,5-diphenyl-1H-imidazol-2-yl)-1H-indole(7d) 

Yield 80%, mp: 193-195℃; Rf = 0.38 (EtOAc:n-Hexane 2:3); 1H NMR (500 MHz, DMSO-

d6) δ 8.49 (s, 1H), 8.48 (s, 1H), 7.92 (d, J = 8.43 Hz, 2H), 7.82 (d, J = 8.43 Hz, 2H), 7.72 (d, J 

= 7.90 Hz, 1H), 7.64 (d, J = 7.85 Hz, 2H), 7.58 (s, 1H), 7.44 (t, J = 7.45 Hz, 1H), 7.42 (dd, J = 

7.90, 6.99 Hz, 1H), 7.41 (dd, J = 7.85 7.45 Hz, 2H), 7.40 (d, J = 7.85 Hz, 1H), 7.39 (dd, J = 

7.85, 7.45 Hz, 2H), 7.36 (d, J = 7.85 Hz, 2H), 7.33 (t, J = 7.45 Hz, 1H), 7.23 (d, J = 8.43 Hz, 

2H), 7.22 (d, J = 8.43 Hz, 2H), 7.16 (dd, J = 7.85, 6.99 Hz, 1H), 5.32 (s, 2H), 5.30 (s, 2H).13C 

NMR (125 MHz, DMSO-d6) δ 145.48, 142.13, 140.26, 139.75, 135.82, 133.82, 132.97, 132.53, 

132.08, 130.34, 130.26, 128.74, 158.35, 127.86, 127.64, 127.06, 125.07, 124.39, 124.18, 

122.07, 121.47, 119.56, 118.94, 110.42, 109.32, 40.12, 38.17.  

4-(4-((2-(1-((1-(4-hydroxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-indol-3-yl)-4,5-

diphenyl-1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)phenol(7e) 

Yield 75%, mp: 189-191℃; Rf = 0.30 (EtOAc:n-Hexane 2:3); 1H NMR (500 MHz, DMSO-

d6) δ 9.41 (s, 1H), 8.60 (s, 1H), 8.49 (s, 1H), 7.72 (d, J = 7.90 Hz, 1H), 7.64 (d, J = 7.85 Hz, 
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2H), 7.58 (s, 1H), 7.57 (d, J = 8.43 Hz, 4H), 7.47 (dd, J = 7.90, 6.99 Hz, 1H), 7.44 (d, J = 7.85 

Hz, 1H), 7.41 (dd, J = 7.85, 7.45 Hz, 2H), 7.41 (t, J = 7.45 Hz, 1H), 7.39 (dd, J = 7.85, 7.45 

Hz, 2H), 7.36 (d, J = 7.85 Hz, 2H), 7.33 (t, J = 7.45 Hz, 1H), 7.20 (dd, J = 7.85, 6.99 Hz, 1H), 

6.84 (d, J = 8.43 Hz, 2H), 6.83 (d, J = 8.43 Hz, 2H), 5.33 (s, 2H), 5.32 (s, 2H).13C NMR (125 

MHz, DMSO-d6) δ 157.6, 150.1, 144.2, 143.9, 139.7, 139.6, 137.4, 136.0, 134.1, 130.9, 129.8, 

128.6, 128.3, 128.1, 128.0, 127.8, 126.1, 125.0, 124.1, 123.2, 122.9, 120.7, 115.3, 112.8, 110.1, 

50.3, 50.1.LC-MS m/z: 682 [M+H]+ Elemental analysis, Calculated, %:C41H31N9O2:C, 72.23; 

H, 4.58; N, 18.49;  Found %:C,72.19; H, 4.52; N, 18.44. 

1-((1-(2-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)-3-(1-((1-(2-methoxyphenyl)-1H-

1,2,3-triazol-4-yl)methyl)-4,5-diphenyl-1H-imidazol-2-yl)-1H-indole(7f) 

Yield 77%, mp: 187-189℃; Rf = 0.36 (EtOAc:n-Hexane 2:3);1H NMR (500 MHz, DMSO-d6) 

δ8.44 (s, 1H), 8.41 (s, 1H), 8.19 (s, 1H), 7.86 (d, J = 7.90 Hz, 1H), 7.37 - 7.35 (m,4H), 7.21 - 

7.19 (m, 5H), 7.01 (m,  2H), 5.18 (s, 2H), 5.03 (s, 2H), 3.82 (s, 6H).13C NMR (125 MHz, 

DMSO-d6) δ 154.6, 145.42, 141.53, 140.39, 139.68, 125.82, 133.85, 132.06, 130.27, 128.74, 

128.46, 128.37, 127.85, 127.02, 125.06, 124.37, 124.23, 123.09, 122.04, 120.84, 118.95, 

118.32, 114.72, 110.48, 109.36, 55.67, 40.32, 38.52.LC-MS m/z: 710 [M+H]+ Elemental 

analysis, Calculated, %:C43H35N9O2:C, 72.76; H, 4.97; N, 17.76;  Found %:C, 72.71; H, 4.93; 

N, 17.71. 

1-((1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)-3-(1-((1-(4-methoxyphenyl)-1H-

1,2,3-triazol-4-yl)methyl)-4,5-diphenyl-1H-imidazol-2-yl)-1H-indole(7g) 

Yield 79%, mp: 184-186oC; Rf = 0.36 (EtOAc:n-Hexane 2:3);1H NMR (500 MHz, DMSO-

d6)δ8.52 (s, 1H), 8.49 (s, 1H), 8.21 (s, 1H), 7.86 (d, J = 7.90 Hz, 1H), 7.65 (m, 2H), 7.55 – 

7.54 (m, 4H), 7.48 – 7.42 (m, 6H), 7.37 – 7.35 (m, 4H), 7.19 (dd, J = 7.85, 6.98 Hz, 1H), 7.08 

– 7.07 (m, 4H), 5.23 (s, 2H), 5.23 (s, 2H), 3.80 (s, 2H).13C NMR (125 MHz, DMSO-d6) δ 

158.82, 145.42, 142.13, 140.36, 139.72, 135.34, 133.87, 132.06, 130.28, 128.75, 128.36, 

128.29, 127.84, 127.53, 127.03, 125.03, 124.35, 124.29, 122.07, 120.98, 119.53, 118.97, 

118.72, 116.23, 110.42, 109.38, 55.87, 40.17, 38.12.LC-MS m/z: 710 [M+H]+ Elemental 

analysis, Calculated, %:C43H35N9O2:C, 72.76; H, 4.97; N, 17.76;  Found %:C, 72.71; H, 4.93; 

N, 17.71. 

3-(4,5-diphenyl-1-((1-(o-tolyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-imidazol-2-yl)-1-((1-(o-

tolyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-indole(7h) 

Yield 76%, mp: 183-185oC; Rf = 0.42 (EtOAc:n-Hexane 2:3);1H NMR (500 MHz, DMSO-

d6)δ8.43 (s, 1H), 8.42 (s, 1H), 8.21 (s, 1H), 7.86 (d, J = 7.91 Hz, 1H), 7.65 (m, J = 7.49, 2.01 

Hz, 2H), 7.53 – 7.21(m, 19H), 5.24 (s, 2H), 5.10 (s, 2H), 2.28 (s, 3H), 2.26 (s, 3H).13C NMR 

(125 MHz, DMSO-d6) δ 145.47, 141.56, 140.13, 139.05, 135.82, 135.34, 133.85, 132.06, 

130.95, 130.24, 129.26, 128.74, 128.36, 127.98, 127.63, 127.54, 127.25, 127.09, 125.08, 

124.35, 124.26, 122.05, 120.37, 119.63, 118.95, 118.54, 110.47, 109.38, 40.32, 38.53, 17.39. 

LC-MS m/z: 678 [M+H]+ Elemental analysis, Calculated, %:C43H35N9:C, 76.20; H, 5.20; N, 

18.60;  Found %:C, 76.16; H, 5.15; N, 18.53. 

3-(4,5-diphenyl-1-((1-(p-tolyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-imidazol-2-yl)-1-((1-(p-

tolyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-indole(7i) 

Yield 77%, mp: 181-183oC; Rf = 0.42 (EtOAc:n-Hexane 2:3);1H NMR (500 MHz, DMSO-

d6)δ8.53 (s, 1H), 8.50 (s, 1H), 8.21 (s, 1H), 7.86 (d, J = 7.92 Hz, 1H), 7.65 (m, 2H), 7.49 – 

7.33 (m, 18H), 7.21 (t, J = 7.85, 6.97 Hz, 1H), 5.25 (s, 2H), 5.10 (s, 2H), 2.36 (s, 6H).13C NMR 

(125 MHz, DMSO-d6) δ 145.47, 14213, 140.18, 139.67, 137.85, 135.89, 133.84, 132.09, 

131.95, 130.82, 145.25, 128.74, 128.39, 127.76, 127.63, 127.59, 127.28, 125.06, 124.36, 

124.28, 122.04, 119.68, 119.35, 119.08, 118.94, 110.47, 109.38, 40.18, 38.17, 21.14.LC-MS 

m/z: 678 [M+H]+ Elemental analysis, Calculated, %:C43H35N9:C, 76.20; H, 5.20; N, 18.60;  

Found %:C, 76.16; H, 5.15; N, 18.53. 
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1-(3-(4-((2-(1-((1-(3-acetylphenyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-indol-3-yl)-4,5-

diphenyl-1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)phenyl)ethan-1-one(7j) 

Yield 78%, mp: 189-191oC; Rf = 0.38 (EtOAc:n-Hexane 2:3);1H NMR (500 MHz, DMSO-

d6)δ8.55 (s, 1H), 8.54 (s, 1H), 8.25 (d, J = 2.01 Hz, 1H), 8.23 (d, J = 2.02 Hz, 1H), 8.21 (d, J 

= 2.00 Hz, 1H), 7.86 (m, 3H), 7.76 – 7.73 (m, 2H), 7.65 – 7.62 (m, 4H), 7.48 – 7.35 (m, 10H), 

7.19 (dd, J = 7.85, 6.97 Hz, 1H), 5.23 (s, 2H), 4.92 (s, 2H), 2.55 (s, 6H).13C NMR (125 MHz, 

DMSO-d6) δ 197.26, 145.42, 142.23, 139.96, 139.74, 136.85, 136.32, 135.84, 133.86, 131.96, 

130.17, 129.34, 128.74, 128.36, 127.85, 127.65, 127.35, 127.14, 124.02, 124.37, 123.98, 

122.05, 121.45, 120.49, 119.63, 118.94, 118.02, 110.42, 109.63, 43.41, 39.38, 26.75. LC-MS 

m/z: 734.8 [M+H]+ Elemental analysis, Calculated, %:C45H35N9O2:C, 73.65; H, 4.81; N, 

17.18;  Found %:C, 73.61; H, 4.75; N, 17.13. 

1-(4-(4-((2-(1-((1-(4-acetylphenyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-indol-3-yl)-4,5-

diphenyl-1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)phenyl)ethan-1-one(7k) 

Yield 82%, mp: 192-194oC; Rf = 0.38 (EtOAc:n-Hexane 2:3); 1H NMR (500 MHz, DMSO-

d6) δ 8.49 (s, 1H), 8.48 (s, 1H), 7.76 (d, J = 8.43 Hz, 4H), 7.74 (d, J = 8.43 Hz, 2H), 7.72 (d, J 

= 7.90 Hz, 1H), 7.71 (d, J = 8.43 Hz, 2H), 7.64 (d, J = 7.85 Hz, 2H), 7.58 (s, 1H), 7.42 (t, J = 

7.45 Hz, 1H), 7.41 (dd, J = 7.90, 6.99 Hz, 1H), 7.40 (d, J = 7.85 Hz, 1H), 7.39 (dd, J = 7.85, 

745 Hz, 2H), 7.38 (dd, J = 7.85, 7.45 Hz, 2H), 7.36 (d, J = 7.85 Hz, 2H), 7.32 (t, J = 7.45 Hz, 

1H), 7.12 (dd, J = 7.85, 6.99 Hz, 1H), 5.31 (s, 2H), 5.30 (s, 2H), 2.56 (s, 6H).13C NMR (125 

MHz, DMSO-d6) δ 196.84, 145.47, 142.16, 139.98, 139.74, 137.85, 136.22, 135.84, 133.84, 

131.96, 130.32, 130.17, 128.74, 128.36, 127.85, 127.63, 127.12, 127.03, 125.02, 124.39, 

123.95, 122.07, 119.53, 118.97, 118.85, 110.47, 109.47, 43.42, 39.3, 26.4. LC-MS m/z: 734.8 

[M+H]+ Elemental analysis, Calculated, %:C45H35N9O2:C, 73.65; H, 4.81; N, 17.18;  Found 

%:C, 73.61; H, 4.75; N, 17.13. 

1-((1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)methyl)-3-(1-((1-(4-nitrophenyl)-1H-1,2,3-

triazol-4-yl)methyl)-4,5-diphenyl-1H-imidazol-2-yl)-1H-indole(7l) 

Yield 80%, mp: 193-195oC; Rf = 0.36 (EtOAc:n-Hexane 2:3); 1H NMR (500 MHz, DMSO-

d6) δ 8.49 (s, 1H), 8.41 (s, 1H), 8.36 (d, J = 9.20 Hz, 2H), 8.29 (d, J = 9.20, 10.00 Hz, 2H), 

7.79 (d, J = 9.20, 10.00 Hz, 2H), 7.73 (d, J = 9.20, 10.00 Hz, 2H), 7.72 (d, J =7.90 Hz, 1H), 

7.64 (d, J = 7.85 Hz, 2H), 7.58 (s, 1H), 7.42 (t, J = 7.45 Hz, 1H), 7.41 (dd, J = 7.90, 6.99 Hz, 

1H), 7.40 (d, J = 7.85 Hz, 1H), 7.39 (dd, J = 7.85, 7.45 Hz, 2H), 7.38 (dd, J = 7.85, 7.45 Hz, 

2H), 7.36 (d, J = 7.85 Hz, 2H), 7.32 (t, J = 7.45 Hz, 1H), 7.12 (dd, J = 7.85 6.99 Hz, 1H), 5.31 

(s, 2H), 5.24 (s, 2H).13C NMR (125 MHz, DMSO-d6) δ 146.05, 145.47, 142.17, 139.98, 139.75, 

135.82, 131.97, 130.17, 128.76, 128.36, 127.84, 127.66, 127.13, 127.04, 126.17, 125.03, 

124.38, 123.98, 121.95, 120.14, 119.53, 118.92, 118.87, 110.42, 109.63, 43.48, 39.31.LC-MS 

m/z: 740.7 [M+H]+ Elemental analysis, Calculated, %:C41H29N11O4:C, 66.57; H, 3.95; N, 

20.83;  Found %:C, 66.51; H, 3.91; N, 20.79. 
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